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Abstract

The field of economic mechanism design has been an active area
of research in economics for at least 20 years. This field uses the
tools of economics and game theory to design “rules of interaction”
for economic transactions that will, in principle, yield some desired
outcome. In this paper I provide an overview of this subject for an
audience interested in applications to electronic commerce and discuss
some special problems that arise in this context.

1 Mechanism design

As an example of mechanism design in action, let us consider the case of
designing an auction to award an item to one of n individuals. Each individ-
ual i has a “maximum willingness to pay” or “value” for the item that we
denote by vi. We assume that this value is private information known only
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by person i. Our goal is to design an auction that will award the item to the
person with the highest value.

The most obvious way to do this is to use a standard English auction. In
this game, the auctioneer continuously raises the price of the good. Bidders
who are unwilling to pay the current price drop out until only one bidder is
left. It is not hard to see that this remaining bidder must be the person with
the highest value. However, it is important to observe that the price that he
pays for the good will be the willingness to pay of the person with the second
highest value (plus, perhaps, a tiny amount to break the tie).

This sort of auction is fine when communication costs are low and iter-
ation is cheap. But what if communication costs are high? For example,
suppose that one wants to conduct an auction that is distributed over space
and/or time. Is there a way to achieve the result of the English auction with-
out iteration? A standard form of one-shot auction is the sealed bid auction.
In this game, each player submits a sealed bid. The bids are opened and the
item is awarded to the person with the highest bid. That person in turn pays
the price he bid for the good.

This auction avoids iteration but it will not in general achieve the desired
objective of awarding the item to the bidder with the highest value. Suppose
that bidder 1 has value of 1 and bidder 2 has value of 2. However, bidder
2 mistakenly believes that bidder 1’s value is 1/2. Bidder 2 therefore bids
1/2 + ε and if bidder 1 bids any amount greater than this he will win the
item.

Is there any kind of one-step procedure that will assign the good to the
person with the highest value regardless of the accuracy of the beliefs of the
participants? It turns out that the answer is “yes.” The Vickrey auction
works as follows. As before, each person submits a single sealed bid and the
item is awarded to the person with the highest bid, but the winning bidder
only has to pay the second-highest bid. (See [20])

It turns out that the optimal strategy in such an auction is for each person
to bid his or her true value for the good. To see this, let bi be the bid of
person i and vi the true value of person i. For simplicity suppose that there
are only two bidders. Then the expected payoff to bidder 1 is

Prob(b1 > b2)[v1 − b2].

If the bracketed term is positive, then bidder 1 wants to make the proba-
bility term as large as possible. But if the bracketed term is positive, setting
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b1 = v1 makes the probability equal to 1, its maximal value. If the bracketed
term is negative, bidder 1 wants to make the probability term as small as
possible. But in this circumstance, setting b1 = v1 makes the probability
0, which is its smallest value. It follows that setting b1 = v1 is always an
optimal strategy. Note that this is a dominant strategy in the sense that
yields the highest expected payoff to each bidder regardless of the other bid-
der’s strategy. Note further that the outcome is essentially the same as the
outcome of the standard English auction: the highest bidder gets the item
but he pays (essentially) the second highest price.

The Vickrey auction has been used in the computer science literature in
[6], [16], [9], and no doubt in several other places. Since it is optimal for
each person to reveal his or her true value, the Vickrey auction ensures that
the item will be awarded to the person with the highest willingness to pay.
However, it does not maximize seller revenue: that problem is considerably
more complicated since the construction of the revenue-maximizing auction
will typically depend on the beliefs of the seller about the buyers’ values.

However, it is often the case that the auction that maximizes expected
seller revenue has a form similar to that of a Vickrey auction. For example, if
there are only two possible valuations for the good, then the seller should set
a single take-it-or-leave it price if he believes that there is a high probability
that the bidder has the high valuation and otherwise use a Vickrey auction.
([1], page 530.) [12] describes how the New Zealand government used a
second-price auction for the spectrum with unfortunate results because they
forgot to include this sort of “reserve price” requirement.

2 Computerized agents

The appropriate design of an economic mechanism depends critically on the
model that one uses to describe the behavior of the participants. Economists
have tended to use game theory to model participant interaction, although
there has also been some work with evolutionary models.

Game theory has been justly criticized for its “hyper-rational” view of
human behavior. However, such hyper-rationality may actually be an ap-
propriate model for software agents: presumably software agents have much
better computational powers than human beings. The whole framework of
game theory and mechanism design may well find its most exciting and prac-
tical application with computerized agents rather than human agents, a point
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recognized by [16].
However, there are several additional considerations that come into play

with artificial agents rather than human agents. First, to function effectively,
a computerized agent has to know a lot about its owner’s preferences: e.g.,
his maximum willingness-to-pay for a good. But if the seller of a good can
learn the buyer’s willingness-to-pay, he can make the buyer a take-it-or-leave
it offer that will extract all of his surplus. Hence privacy appears to be a
critical problem for “computerized purchasing agents.” This consideration
usually does not arise with purely human participants, since it is generally
thought that they can keep their private values secret.1

Secondly, the artificial agent must guard against dynamic strategies that
can extract private information. For example, suppose that an agent knows
the lowest price at which its master will agree to selling the good (the “reser-
vation price”) and that it can safeguard this information from buyers. Sup-
pose that this selling agent follows the simple strategy of accepting any offer
that is higher than its reservation price. A buyer can then simply start at 0
and offer a sequence of incremental bids ensure that it ends up purchasing
the good at a price slightly more than the seller’s reservation price. This will
typically not be a good deal for the seller!

This example is far from fanciful. In 1993 the Australian government
auctioned off licenses for satellite-television services. The winning bid for
one of the licenses, A$212 million, was made by a company called Ucom.
Once the government announced Ucom had won, they proceeded to default
on their bid, leaving the government to award the license to the second-
highest bidder—which was also Ucom! They defaulted on this bid as well;
four months later, after several more defaults, they paid A$117 million for
the license, which was A$95 million less than their initial winning bid! The
license ended up being awarded to the highest bidder at the second highest
price—but the poorly designed auction introduced at least a year’s delay into
pay TV into Australia. See [12] for details of this story and how its lessons
were incorporated into the design of the US spectrum auction.

In fact, the example shows why attention to mechanism design is impor-
tant. If one can construct a mechanism for which truthfully revealing one’s
true willingness to pay is a dominant strategy, then there is no need to worry

1Even if current information can be safeguarded, records of past behavior can be ex-
tremely valuable, since historical data can be used to estimate willingness to pay. What
should be the appropriate technological and social safeguards to deal with this problem?
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about keeping the willingness to pay private. The Vickrey auction is such
a mechanism since the dominant strategy in this game is for each party to
truthfully reveal the willingness to pay. A mechanism of this sort is called a
direct mechanism. Somewhat surprisingly it turns out that the class of direct
mechanisms is much broader than it first appears. A fundamental result in
the theory of mechanism design that we will outline below, the revelation
principle, shows that anything that can be achieved by an arbitrary mecha-
nism can be achieved by a direct mechanism. Hence the issue of keeping the
willingness to pay private can be finessed if the mechanism is appropriately
designed.

3 A Generalized Vickrey Auction

The Vickrey auction described above is a very powerful mechanism but ap-
pears to be of limited scope. However there is a generalization of the Vickrey
auction that will handle much more complex problems—including many re-
source problems that appear to be quit different in nature. The Generalized
Vickrey Auction (GVA) that I will describe below appears to be part of the
mechanism design folklore, but it doesn’t appear to be described in writing
anywhere. Here I will provide a detailed argument, but I make no claims of
originality except perhaps with respect to the exposition.

Suppose that there are i = 1, . . . , n consumers who each consume j =
0, . . . , k goods. Let xji be the consumption of good j by consumer i. Good
0 will denote “money” and xi = (x1

i , . . . , x
k
i ) will be the consumption bundle

of goods by consumer i. Each consumer i holds some initial consumption
bundle x̄i and some initial amount of money x̄0

i .
An allocation x = (x1, . . . , xn) of goods is feasible if the total amount of

each good held (including money) equals the total amount available:

n∑
i=1

xji =
n∑
i=1

x̄ji ,

for each j = 0, . . . , k.
Each consumer i has a utility function ui(x) + x0

i ; this is known as a
quasilinear utility function and has certain properties that make it convenient
for analysis. In particular, there are no “income effects” that influence the
demand for the various goods. Note that this allows consumer i’s utility to
depend on the total allocation of the goods across all consumers not just on
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how much he gets of each good. In most of our examples, we specialize to the
form where ui(x) = ui(xi), but in the last example we use the more general
specification.

A reasonable objective in allocating the goods among the consumers is
to allocate them in a way that maximizes the sum of utilities:

max
(xji )

∑n
i=1 ui(x) + x0

i∑n
i=1 x

j
i =

∑n
i=1 x̄

j
i

for all j = 0, . . . k

In the simple case of the Vickrey auction described above, the utility func-
tions were simply the difference between the value, vi and the payment made
by the consumer. Just as the consumer will not want to reveal his value
to the seller, the participants in this resource allocation problem will not in
general want to reveal their true utility functions. Our problem is to design a
mechanism that will induce the participants to truthfully reveal their private
information.

The Generalized Vickrey Auction

1. Each consumer i reports a utility function ri(·) (which may or may not
be the truth) to the center.

2. The center calculates the allocation (x∗i ) that maximizes the sum of the
reported utilities subject to the resource constraint.

3. The center also calculates the allocation (x̂∼i) that maximizes the sum of
the utilities other than that of consumer i subject to the constraint that the
allocation not use any of consumer i’s resources.

4. Agent i receives the bundle x∗i and receives a payment of
∑
j 6=i[rj(x

∗) −
rj(x̂∼i)] from the center.

The final payoff to agent i in the GVA is given by

ui(x
∗) +

∑
j 6=i

rj(x
∗)−

∑
j 6=i

rj(x̂∼i).

I claim that if the GVA mechanism is used then it is in the interest of
consumer i to report his true utility function ri(·) = ui(·).

The first step in the argument is to note that the third term in the
sum is irrelevant to consumer i’s decision since it is totally outside of his
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control. To emphasize this we denote this term by K. It is useful in reducing
the magnitude of the sidepayment to consumer i, but has no effect on the
strategy of consumer i.

Next observe that the center will choose x∗i to maximize

ri(x) +
∑
j 6=i

rj(x)

subject to the resource constraint and consumer i wants them to maximize
his payoff,

ui(x) +
∑
j 6=i

rj(x)−K.

By inspection of these two equations it is optimal for the consumer to report
ri(·) = ui(·). This concludes the argument.

4 Examples of the GVA

Here we examine a few special cases of the GVA.

The Standard Vickrey Auction. In this case, the utility function of
consumer i is vi−p, where vi is consumer i’s value and p is the price he pays.
Let xi = 1 if consumer i gets the good and xi = 0 if he does not. Then the
sum of the utilities becomes

n∑
i=1

vixi

and the resource constraint is

n∑
i=1

xi = 1.

Of course xi must be an integer, but this ends up being satisfied automatically
so there is no need to impose that as an additional constraint.

Let m be index of the consumer with the maximum value of vi; then in
order to maximize the sum of utilities the center will allocate x∗m = 1 and
xj = 0 for all j 6= m. Let consumer s have the second-highest value; then
if we eliminate consumer m the maximal sum of the remaining utilities will
be vs. The net payoff to consumer m in the GVA will be vm − vs which is
exactly the same as the Vickrey auction.
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Multiple units of the good. Suppose that there is one good but there
are x̄ units of it to sell. Let (x∗i ) be the allocation that maximizes the sum
of all consumers’ utilities and let x̂j∼i be the amount allocated to consumer
j if the sum of all consumers’ utilities but consumer i is maximized. Then
consumer i’s payoff in the GVA is:

ui(x
∗
i ) +

∑
j 6=i

uj(x
∗
j)−

∑
j 6=i

uj(xj∼i).

To see how this works, suppose that there are 2 consumers and 3 units of
the good to allocate. Consumer 1 values the first unit of the good at 10, the
second unit at 8 and the third unit at 5. Consumer 2 values the goods at (9,
7, 6), respectively. By inspection the optimal assignment is to give consumer
1 two units of the good and consumer 2 one unit of the good. Consumer 1
receives a total utility of 18 and consumer 2 receives a total utility of 9.

Here’s how the GVA handles this problem. If consumer 1 isn’t present,
all the goods go to consumer 2 who receives a utility of 9 + 7 + 6 = 22. In
the GVA, Consumer 1’s net payoff is

18 + [9− 22] = 18− 13 = 5.

So consumer 1 pays 13 for the 2 units of the good he receives.
Similarly, if consumer 2 isn’t present, all the goods go to consumer 1 who

receives a utility of 10 + 8 + 5 = 23. Consumer 2’s net payoff is then

9 + [18− 23] = 9− 5 = 4.

Hence consumer 2 pays 5 for the 1 unit of the good that he receives. The
seller receives 13 + 5 = 18 for the 3 units that he has sold.

Public goods. Suppose that each consumer i initially owns x̄i units of the
good. Consumer i can contribute xi to a “collective good” (e.g., a pool for
site licensed software) which will result in a total collection of G =

∑n
i=1 xi.

The sum of utilities is
n∑
i=1

ui(G) +
n∑
i=1

x̄i −G.

We assume that ui(·) is a differentiable, increasing, concave function.
This is a classic public goods problem. The G∗ that maximizes the sum

of utilities satisfies the condition
n∑
i=1

u′i(G
∗) = 1,
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whereas the contribution that is optimal for each agent i acting on his own
satisfies the condition

u′i(G
†) = 1.

Under the conditions we have assumed, the total voluntary contributions will
be smaller than the socially optimal amount.

How does the GVA work to solve this problem? Let (x∗i ) be a pattern of
contributions that maximizes the sum of utilities and let (x̂j∼i) be the pattern
of contributions that maximizes the sum of utilities omitting the utility and
contribution of consumer i. The payoff to consumer i is then

ui(x
∗
i ) +

∑
j 6=i

[uj(x
∗
j)− uj(x̂j∼i].

To see how this works in practice suppose that there are three consumers
each with an initial wealth of 10. If the total contributed to the collective
good is G = x1 + x2 + x3, consumer i will have a net value of .4G+ 10− xi.
The sum of the utilities over all 3 consumers is

1.2G+ (30−G) = 30 + .2G,

which is clearly maximized when x1 = x2 = x3 = 10. The sum of utilities
over any 2 consumers is

.8G+ (20−G) = 20− .2G,

which is maximized when x1 = x2 = x3 = 0. Hence the equilibrium payoff
to consumer i is

.4× 30 + .8× 30− [.8× 0 + 20] = 16.

In equilibrium each consumer makes a payment of 10, gets utility from the
public good of 12, and receives a sidepayment of 4 in order to provide ap-
propriate incentives. Note that the budget doesn’t balance in this example;
the center must pay something in order to induce appropriate incentives for
truthful revelation of preferences.

Another way that this public goods problem might be handled would
be to turn it into a discrete problem. Let vi be the net value accruing to
person i if the public good is adopted at its optimal level; in our example,
vi = 12−10 = 2. Let agent report a net value ri, which may or may not be his

10



true net value. Let δ(·) be a function that is equal to zero if its argument is
negative and 1 if its argument is nonnegative. The Groves-Clarke mechanism
produces the public good if r1 + r2 + r3 > 0, and awards individual i a payoff
of

[v1 + r2 + r3]δ(r1 + r2 + r3)− [r2 + r3]δ(r2 + r3).

See [5], [2] for the original treatment, or [19] for a textbook treatment of this
mechanism.

In this formulation the budget also does not balance, but now the cen-
ter ends up running a surplus rather than a deficit. That is, the incentive
payments flow from the individuals to the center rather than the other way
around. This shows that although the GVA does not exhibit budget bal-
ance in general, the direction of the budget balance may depend on how the
problem is formulated.

The argument that we have used for the GVA is the standard proof
for the Groves-Clarke mechanism; see, e.g., [19], p. 429. The interesting
fact is that this standard proof works for a much broader class of resource
allocation problems than the classic public goods problem to which it is
normally applied.

5 The Revelation Principle

The GVA is called a direct revelation mechanism since the “message” sent to
the center is in fact the entire private information of the consumer: his utility
function. One might imagine other “indirect” mechanism: the consumer
announces a bid, or a reservation price. It is rather remarkable that anything
that can be achieved by such an “indirect” mechanism can be achieved by a
direct mechanism. This assertion is known as the revelation principle.

In this paper we have considered only mechanisms for which truth-telling
is a dominant strategy. The revelation principle is valid under much more
general circumstances but it is particularly easy to explain in this case.2

For notational simplicity let us index the different types of utility function
by t so that ui(t, x) is consumer i’s true utility if the outcome is x. Let ri be
agent i’s reported utility type, let r = (r1, . . . , rn) be the set of all reports,
and let x(r) be the outcome if the reports are r. The function that assigns

2In fact, the revelation principle was first formulated for dominant strategy equilibria
by [4].
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the outcome x(r) is the mechanism. If truthtelling is a dominant strategy
for each agent i then it must be the case that

ui(t, x(r1, . . . , ti, . . . , rn))

≥ ui(t, x(r1, . . . , ri, . . . rn))

for all reports ri

(This is called the incentive compatibility constraint.)
Let us now consider some other mechanism. Rather than just reporting

the type t, this other mechanism allows consumer i to send some different
message, mi. If the consumers send messages m = (m1, . . . ,mn) the resulting
allocation is y. If m∗i is a dominant strategy for consumer i

ui(t, y(m1, . . .m
∗
i , . . . ,mn))

≥ ui(t, y(m1, . . .mi, . . . ,mn)

for all messages mi

What can consumer i’s message depend on? It can’t depend on the the other
consumers’ types since consumer i doesn’t know them. All that consumer
i’s message can depend on is his private information—i.e., his type. Accord-
ingly, let us define a function Mi(t) = m∗i that gives the optimal message for
consumer i if his type is t. By definition, Mi(t) must satisfy

ui(t, y(m1, . . . ,Mi(t), . . . ,mn)) ≥
ui(t, y(m1, . . .mi, . . . ,mn)

for all messages mi,

which is exactly the condition that characterizes a direct revelation mech-
anism. Since the optimal message only depends on the true type there is
no loss in generality in designing the mechanism so that the message is the
type.

In other words there is no loss of generality in restricting ourselves to
direct revelation mechanism. This is very important for the design of com-
puterized agents since it says in effect that there is nothing to be gained (or
lost) by communicating anything other than the “essentials” of the problem.

Consider, for example, the auction problems examined earlier. Each con-
sumer had an incentive to reveal his true value vi; the auction design itself
ensured that the consumer was not hurt by this full revelation. The fact
that we can restrict ourselves to direct mechanisms makes the privacy issue
alluded to before much less troublesome.
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6 Brief introduction to the literature

The classic work that laid out the rationale and basic framework for the field
of mechanism design is [7] . Useful surveys of mechanism design are available
in [3]; [15] and [8] are particularly useful. [10] provides an excellent textbook
treatment of mechanism design.

For interesting applications of mechanism design see [13], [14], [11], [12],
and [21] for auction design. See [17] for matching models and [18] for price
discrimination.

Several computer science applications of mechanism design that were in-
fluenced by the mechanism design literature are described in [16].
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