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What day of the week are there the most searches for

[hangover]?
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Searches for [hangover]

Explore trends Interest over time

Hot searches The number 100 represents the peak search volume
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Searches for [hangover| and [vodkal]

Explore trends Interest over time

Hot searches

Search terms

x I vodka
+Add term

» Other comparisons
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Looking for gifts when single

1. [gift for boyfriend]
2. [gift for girlfriend]

Interest over time

The number 100 represents the peak search volume

(VAL
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Looking for gifts when married

1. [gift for husband]
2. [gift for wife]

Web Search Interest: gift for husband, gift for wife. United States, Past 90 days ¢ -

Interest over time

The number 100 represents the peak search volume

m
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Problem motivation

Want to use Google Trends data to nowcast economic series
» unemployment may be predicted by “job search” queries
> auto purchases may be predicted by “vehicle shopping” queries
» often a contemporaneous relationship, hence “nowcasting”
» useful due to reporting lags and revisions

v

» Fat regression problem: there are many more predictors than
observations

v

Millions of queries, hundreds of categories

» number of observations ~ 100 for monthly economic data
» number of predictors ~ 150 for “economic” categories in
Trends

How do we choose which variables to include?

v
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Example: unemployment

» Sometimes Google Correlate works
» Load in: data on initial claims for unemployment benefits
» Returns: 100 queries, including [sign up for unemployment]

e.googlelabs.com/search?e=id: Row97A_dRd&t=weekly#default,20

O v

kmarks here on the bar. Import

now...

Other Bookmarks

User uploaded activity for Initial clalms NSA and US Web Search activity for sign up for unemployment (=0.8841)
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[ Line chart # Scatter plot

—initial claims NSA —sign up for unemployment
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O show all downloads...

X




Build a simple AR model

> Use deseasonalized initial claims (y;)

» Use deseasonalized, detrended searches for [sign up for
unemployment] (x;)

base: yy = ap+aiyi—1+ et
regr: yy = aop+ aiyi—1+ bxt + e

» Estimate regressions using rolling window

» One-step-ahead MAE during recession is about 8.7% lower
when [sign up for unemployment] query is included
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But sometimes simple correlation doesn't work

User uploaded activity for US Auto Sales NSA and United States Web Search activity for indian restaurants

(r=0.7195)
K Line chart 4 Scatter plot
— US Auto Sales NSA — indian restaurants
Hint: Drag to Zoom, and then correlate over that time only.
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How to avoid spurious correlation?

» Control for trend and seasonality
» Build a model for the predictable (trend + seasonality) part of
time series
> In time series this is called whitening or prewhitening
» Find regressors that predict the residuals after removing trend
and seasonality
» How to choose regressors?

» Simple correlation is too limited
» Human judgment doesn't scale
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Some approaches to variable selection

» Human judgment: what we mostly do
» Significance testing: forward and backward stepwise regression
» Complexity criteria: AlIC, BIC, etc

» Dimensionality reduction: principle component, factor models,
partial least squares

» Machine learning: Penalized regression, lasso, LARS, ridge
regression, elastic net
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Our approach

» Bayesian Structural Time Series (BSTS)

» Decompose time series into trend + seasonality + regression
Use Kalman filter for trend + seasonality (whiten time series)
Spike and slab regression for variable selection

Estimate via Markov Chain Monte Carlo simulation of
posterior distribution

» Bayesian model averaging for final forecast

v

v

v
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How BSTS helps reduce overfitting

> Kalman filter used to whiten the series
» Remove common seasonality and trend, regressors chosen to
predict residuals
» Estimation of (seasonality, trend, regression) is simultaneous
» Same spirit as Granger causality
» Overfitting due to spurious correlation with regressors
» Remove “one time” events (can be automated)
> Apply human judgment
» Overfitting due to many regressors
> Informative prior to suggest likely number of regressions or
regressor categories
» Bayesian model averaging over many small regressions
(“ensemble estimation™)
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Basic structural model with regression

» Consider classic time series model with constant level, linear
time trend, and regressors
> Ye = p+ bt + Bxc + e
» “Local linear trend” is a stochastic generalization of this
» Observation: y; = s + z; + e1; = level 4 regression
State 1: py = p¢—1 + br—1 + e = random walk + trend
State 2: by = b;_1 + e3; = random walk for trend
State 3: z; = Bx; = regression

vV vy

» Parameters to estimate: regression coefficients 3 and
variances of (ej) fori=1,...,3

» Use these variances to construct optimal Kalman forecast:
Ve =91+ ke X (Ye—1 — Jr—1) + xeB

» k; depends on the estimated variances
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Intuition for Kalman filter

» Consider simple case without regressors and trend
» Observation equation: y; = u; + ent
» State equation: p; = ps—1 + €t
» Two extreme cases
» ey = 0 is constant mean model where best estimate is sample
average through t —1:  y, 1 = ZZ: Vs
» e1; = 0 is random walk where best estimate is current value
Yt—1
» For general case take weighted average of current and past
observations, where weight depends on estimated variances
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Nice features of Kalman approach

» No problem with unit roots or other kinds of nonstationarity
» No problem with missing observations

» No problem with mixed frequency

» No differencing or identification stage (easy to automate)

» Nice Bayesian interpretation

» Easy to compute estimates (particularly in Bayesian case)

> Nice interpretation of structural components

> Easy to add seasonality

» Good forecast performance

Steve Scott Hal Varian Google Nowcasting



Spike and slab regression for variable choice

» Spike
> Define vector « that indicates variable inclusion
» ~; = 1 if variable i has non-zero coefficient in regression, 0
otherwise
» Bernoulli prior distribution, p(«), for v
» Can use an informative prior; e.g., expected number of
predictors

» Slab

» Conditional on being in regression (7; = 1) put a (weak) prior

on B, p(Bv).
» Estimate posterior distribution of (v, 8) using MCMC
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Bayesian model averaging

» We simulate draws from posterior using MCMC

» Each draw has a set of variables in the regression (vy) and a
set of regression coefficients ()

» Make a forecast of y; using these coefficients
» This gives the posterior forecast distribution for y;
» Can take average over all the forecasts for final prediction

» Can take average over draws of 7 to see which predictors have
high probability of being in regression
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Torture test simulation for BSTS

» Pick k = 3 categories (out of 150) and their associated time
series

» Construct artificial time series = sum of these k + noise
» See if BSTS picks the right categories

» 0 noise = perfect
5% noise = perfect
10% noise = misses one, but still does good forecast
performance deteriorates for higher noise levels
... but it degrades gracefully

vV vy vy
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Example of torture test

SD =.05

Card_Games l:l
Finess I:l
Arts_and Entertanment l:l

00 02 04 06 08 10

Inclusion Probability

SD =.20

Cara_Games l:l
Finess I:l
Arts_and Entertanment l:l

00 02 04 06 08 10

Inclusion Probability
SD = .40

Card_Games

Fitness

00 02 04 06 08 10

Inclusion Probability
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SD =.10

e

00 02 04 06 08 10

Inclusion Probability

SD =.30

CardGames l:l
Finess I:l
Arts_and Entertanment l:l

00 02 04 06 08 10

Inclusion Probability

SD =.50

CardGames l:l
Finess l:l

00 02 04 06 08 10

Inclusion Probability

Nowcasting



Example 1. Consumer Sentiment

» Monthly UM Consumer sentiment from Jan 2004 to Apr 2012

(n=100)
» Google Insights for Search categories related to economics
(k = 150)

» No compelling intuition about what predictors should be

University of Michigan: Consumer Sentiment (UMCSENT)
Source: Thomsan Reuters/University of Michigan

~100)

(Index 1t Quarter 1966:
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2004 2005 2006 2007 2008 2008 2010 2011 2012 2013

T A T U
FRED -~ 2013 researeh losifes org
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Consumer sentiment as leading indicator

» Leading indicator of retail sales in last recession

— CSENT [~
— SALES

CSENT
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Variable selection

v

Google Insights for Search categories related to economics
(k = 150)

Deseasonalize predictors using R command stl

v

v

Detrend predictors using simple linear regression

v

Let bsts choose predictors
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UM Consumer Sentiment Predictors

Probability of inclusion

Financial.Planning ‘

Investing

Business.News

Search.Engines

Energy.Utilities

Hybrid Alternative Vehicles

Inclusion Probability
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Posterior distribution of one-step ahead forecast

150
1

100
1

distribution

2004 2006 2008 2010 2012

time
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State decomposition

Recall observation equation:
Ye = pit + X0 + enr

We can plot the posterior distribution of each of these
components. The regression component can be further expanded

Ve = ft + X161 + -+ XpeSp + €1t

Natural to order predictors by probability of inclusion and look at
cumulative plot.
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Trend and regression decomposition

trend regression
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1. trend (mae=5.6656)
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add Financial Planning

2. add Financial.Planning (mae=4.8529)
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add Business News

3. add Business.News (mae=3.9888)
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60

| =
N
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add Investing

4. add Investing (mae=3.3511)
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60

| =
N
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add Search Engines

5. add Search.Engines (mae=3.2748)
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Example 2: gun sales

Use FBI's National Instant Criminal Background Check

L ] € &% | [ www.google.com, Qr v =
B3 calendar G Bookmark ™ Gmail - Evernote & Docs ~ [ Other Bookmarks
GOL nge COrrelate FBI NICS data % Search correlations
- - Edit this data

Compare US states Correlated with FBI NICS data

Compare weekly time series 0.9356 stack on

Compare monthly time series ~ 0.9329 bread
0.9326 44 mag

Shift series |0 %! months 0.9317 buckeye outdoors

Country: 0.9307 mossberg
0.9273 g star
United States X
0.9267 ruger 44

. 0.9264 baking
Documentation

Comic Book 0.9254 .308

FAQ 0.9242 savage 22

Tutorial

Vhitepaper | Showmore. | Exportdeta as CSV | Shere: @) () W Tweet [ 251 ©
Correlate Labs

searen by braung User uploaded activity for FBI NICS data and United States Web

Search activity for stack on (r=0.9356)
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Google Correlate Results

» [stack on] has highest correlation
> [gun shops] is chosen by bsts

» Regression model gives 11% improvement in one-step ahead
MAE

User uploaded activity for FBI NICS data and United States Web Search activity for stack on (r=0.9356)
k% Line chart #° Scatter plot
— FBI NICS data — stack on
Hint: Drag to Zoom, and then correlate over that time only.
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1. trend (mae=0.49947)
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Seasonal

2. add seasonal (mae=0.33654)

[ v
[
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3. add gun.shops (mae=0.15333)

[ v
[
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Google Trends predictors

» 586 Google Trends verticals, deseasonalized and detrended

» 107 monthly observations

Category mean | inc.prob
Recreation::Outdoors::Hunting:and:Shooting | 1,056,208 0.97
Travel::Adventure: Travel -84,467 0.09

Table: Google Trends predictors for NICS checks.
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State decomposition
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1. trend (mae=130270)
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Seasonal

2. add seasonal (mae=61094)

1500000 2000000

1000000

500000

2e+05
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Hunting and Shooting

3. add recreation_shooting (mae=43128)
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1000000

500000

2e+05
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Searches for [gun shop]

Explore trends

Interest over time
Hot searches e number 100 represenis the peak search volume News headines | | Forecast
Search terms 7
[ somerer
+ Add tern
» Other comparisons
umit to
Note
Web Search
United States
2004 - present
Al Categories
Regional interest Q E Related terms Top Rising
Worldwide > United Sttes
buds gun shop 100 e—
the gun shop 20 -
gun shops 15 -
bass pro 15 -
pawn shop 15 -
qun store 0 -
buds guns 5m
o — 100 Subregion| Metro| City online gun shop 5m
bils gun shop .

» View change over time
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» Can use prior to improve estimate of trend component

» Google data starts in 2004, only one recession
» Can estimate parameters of trend model with no regressors
» Use this as prior for estimate of trend in estimation period
» Can use prior to influence variable choice in regression
> Influence the expected number of variables in regression
(parsimony)
» Give higher weight to certain verticals (e.g., economics related)
» Exclude obvious spurious correlation (e.g., pop song titles)
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New Homes Sold in the US

New Homes Sold in the United States (HSN1FNSA)
Source: U.S. Department of Commerce: Census Bureau
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Run correlate

Goc :gle correlate |nsnirsa Search correlations | Editthisdaia
Compare US states Correlated with HSN1FNSA
Compare weekly fime series 09819 tahitian noni juice

Compare monthly time serles 09809 exhaustsound
0.8802 traderoniine.com
snift senesl(_) 2] montns 106789 www.kbb.com
0.8786 80220 morigage
Country: United States Y] 762 appreciation rate
09776 home appreciation

Documentation 08738 heip-sel

Comic Book

09759 planned community
FAQ

09758 new home builder
Tutorial
Whitepaper

Show mere | Exportcataas CSV | Share: @ () [ W Tweet| [ 31 o

Correlate Labs
Search by Drawing
User uploaded activity for HSN1FNS A and United States Web Search activty for 80/20 mortgage (r=0.9786)
Ké%Line chart 4 Scatter plot
— HSN1FNSA — 80720 mortgage
Hint: Drag to Zoom, and then correlate over that time only.

Normalized Search Activity (o)
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BSTS variable selection

With all correlates

appreciation.rate

oldies.lyrics

real.estate purchase

irs.1031

www.mail2Zweb.com

century.21.realtors

selling.real estate
0

0.

T T T T 1
02 04 06 08 1.0

Inclusion Probability
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Eliminate spurious correlates

appreciation.rate

irs. 1031
century.21.realtors
real.estate.appraisal -
estate.appraisal -
real.estate purchase
X80.20.mortgage :l
]

selling.real estate

Inclusion Probability
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State decomposition

trend seasonal 12.1 regression
" " "
2 2 2
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B B B
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Predictors

— (.89 appreciation.rate
0.45irs.1031
0.35 century.21 realtors
0.2 real estate.appraisal
0.17 estate.appraisal
0.15 real.estate purchase
0.13 X80.20.mortgage

0.12 selling.real.estate

Scaled Value

1
1

2004 2006 2008 2010 20§12

Steve Scott Hal Varian Google Nowcasting



1. trend (mae=0.48054)

1.0
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Seasonal

2. add seasonal (mae=0.47767)

1.0
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Appreciation rate

3. add appreciation.rate (mae=0.2241)

20
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IRS 1031

4. add irs.1031 (mae=0.14654)
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‘?

Steve Scott Hal Varian Google Nowcasting



Century 21 realtors

5. add century.21.realtors (mae=0.077138)
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Real estate appraisal

6. add real.estate.appraisal (mae=0.12315)
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Estate appraisal

7. add estate.appraisal (mae=0.16587)
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Real estate purchase

8. add real.estate.purchase (mae=0.13757)
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9. add X80.20.mortgage (mae=0.11207)

20
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v

Mixed frequency forecasting — done

v

Fat tail distributions — underway
Parallel MCMC — underway
Panel data

v

v

v

Automate the whole thing — goal
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