Bayesian Variable Selection for Nowcasting Time Series

Steve Scott Hal Varian *Google*

August 14, 2013

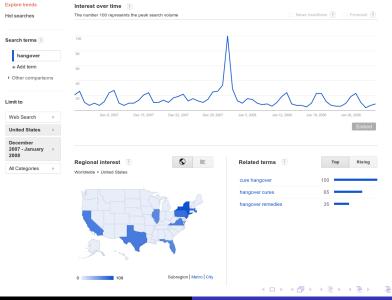
A ►

< ≣ >

What day of the week are there the most searches for [hangover]?

- 1. Sunday
- 2. Monday
- 3. Tuesday
- 4. Wednesday
- 5. Thursday
- 6. Friday
- 7. Saturday

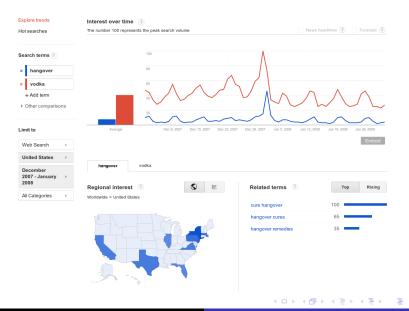
Searches for [hangover]



Steve Scott Hal Varian Google No

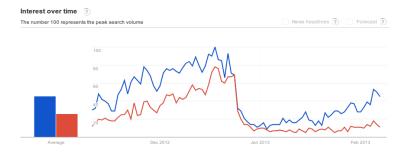
Nowcasting

Searches for [hangover] and [vodka]



Looking for gifts when single

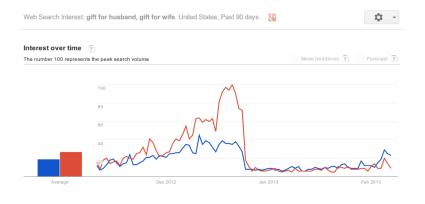
[gift for boyfriend] [gift for girlfriend]



イロト イヨト イヨト イヨト

Looking for gifts when married

- 1. [gift for husband]
- 2. [gift for wife]

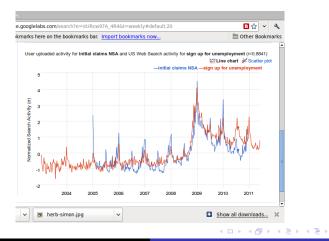


イロト イヨト イヨト イヨト

- Want to use Google Trends data to nowcast economic series
 - unemployment may be predicted by "job search" queries
 - auto purchases may be predicted by "vehicle shopping" queries
 - often a contemporaneous relationship, hence "nowcasting"
 - useful due to reporting lags and revisions
- Fat regression problem: there are many more predictors than observations
- Millions of queries, hundreds of categories
 - $\blacktriangleright\,$ number of observations \sim 100 for monthly economic data
 - \blacktriangleright number of predictors \sim 150 for "economic" categories in Trends
- How do we choose which variables to include?

Example: unemployment

- Sometimes Google Correlate works
- Load in: data on initial claims for unemployment benefits
- Returns: 100 queries, including [sign up for unemployment]



Steve Scott Hal Varian Google

Nowcasting

- Use deseasonalized initial claims (y_t)
- Use deseasonalized, detrended searches for [sign up for unemployment] (x_t)

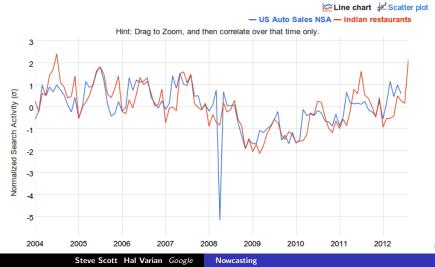
base:
$$y_t = a_0 + a_1y_{t-1} + e_t$$

regr: $y_t = a_0 + a_1y_{t-1} + bx_t + e_t$

- Estimate regressions using rolling window
- One-step-ahead MAE during recession is about 8.7% lower when [sign up for unemployment] query is included

But sometimes simple correlation doesn't work

User uploaded activity for US Auto Sales NSA and United States Web Search activity for Indian restaurants (r=0.7195)



Control for trend and seasonality

- Build a model for the *predictable* (trend + seasonality) part of time series
- In time series this is called whitening or prewhitening
- Find regressors that predict the *residuals* after removing trend and seasonality
- How to choose regressors?
 - Simple correlation is too limited
 - Human judgment doesn't scale

- Human judgment: what we mostly do
- Significance testing: forward and backward stepwise regression
- Complexity criteria: AIC, BIC, etc
- Dimensionality reduction: principle component, factor models, partial least squares
- Machine learning: Penalized regression, lasso, LARS, ridge regression, elastic net

Bayesian Structural Time Series (BSTS)

- Decompose time series into trend + seasonality + regression
- Use Kalman filter for trend + seasonality (whiten time series)
- Spike and slab regression for variable selection
- Estimate via Markov Chain Monte Carlo simulation of posterior distribution
- Bayesian model averaging for final forecast

How BSTS helps reduce overfitting

- Kalman filter used to whiten the series
 - Remove common seasonality and trend, regressors chosen to predict residuals
 - Estimation of (seasonality, trend, regression) is simultaneous
 - Same spirit as Granger causality
- Overfitting due to spurious correlation with regressors
 - Remove "one time" events (can be automated)
 - Apply human judgment
- Overfitting due to many regressors
 - Informative prior to suggest likely number of regressions or regressor categories
 - Bayesian model averaging over many small regressions ("ensemble estimation")

Basic structural model with regression

 Consider classic time series model with *constant* level, linear time trend, and regressors

 $\flat \ y_t = \mu + bt + \beta x_t + e_t$

- "Local linear trend" is a stochastic generalization of this
 - Observation: $y_t = \mu_t + z_t + e_{1t} = \text{level} + \text{regression}$
 - State 1: $\mu_t = \mu_{t-1} + b_{t-1} + e_{2t} = random walk + trend$
 - State 2: $b_t = b_{t-1} + e_{3t} = random$ walk for trend
 - State 3: $z_t = \beta x_t = regression$
- Parameters to estimate: regression coefficients β and variances of (e_{it}) for i = 1,...,3
- Use these variances to construct optimal Kalman forecast: $\hat{y}_t = \hat{y}_{t-1} + k_t \times (y_{t-1} - \hat{y}_{t-1}) + x_t \beta$

(《圖》 《문》 《문》 - 문

k_t depends on the estimated variances

Consider simple case without regressors and trend

- Observation equation: $y_t = \mu_t + e_{1t}$
- State equation: $\mu_t = \mu_{t-1} + e_{2t}$
- Two extreme cases
 - $e_{2t} = 0$ is constant mean model where best estimate is sample average through t - 1: $\bar{y}_{t-1} = \sum_{s=1}^{t-1} y_s$
 - $e_{1t} = 0$ is random walk where best estimate is current value y_{t-1}
- For general case take weighted average of current and past observations, where weight depends on estimated variances

- ▶ No problem with unit roots or other kinds of nonstationarity
- No problem with missing observations
- No problem with mixed frequency
- No differencing or identification stage (easy to automate)
- Nice Bayesian interpretation
- Easy to compute estimates (particularly in Bayesian case)
- Nice interpretation of structural components
- Easy to add seasonality
- Good forecast performance

Spike

- \blacktriangleright Define vector γ that indicates variable inclusion
- $\gamma_i = 1$ if variable *i* has non-zero coefficient in regression, 0 otherwise
- Bernoulli prior distribution, $p(\gamma)$, for γ
- Can use an informative prior; e.g., expected number of predictors
- Slab
 - Conditional on being in regression (γ_i = 1) put a (weak) prior on β_i, p(β|γ).

▲圖▶ ▲屋▶ ▲屋▶

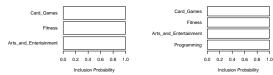
• Estimate posterior distribution of (γ, β) using MCMC

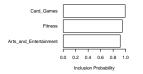
- We simulate draws from posterior using MCMC
- Each draw has a set of variables in the regression (γ) and a set of regression coefficients (β)
- Make a forecast of y_t using these coefficients
- This gives the posterior forecast distribution for y_t
- Can take average over all the forecasts for final prediction
- Can take average over draws of γ to see which predictors have high probability of being in regression

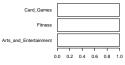
- Pick k = 3 categories (out of 150) and their associated time series
- Construct artificial time series = sum of these k + noise
- See if BSTS picks the right categories
 - 0 noise = perfect
 - ► 5% noise = perfect
 - 10% noise = misses one, but still does good forecast
 - performance deteriorates for higher noise levels
 - ... but it degrades gracefully

Example of torture test

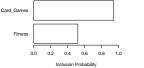
SD = .05



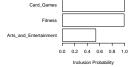




Inclusion Probability



SD = .40



Steve Scott Hal Varian Google

Nowcasting

Example 1: Consumer Sentiment

- Monthly UM Consumer sentiment from Jan 2004 to Apr 2012 (n = 100)
- ▶ Google Insights for Search categories related to economics (k = 150)
- No compelling intuition about what predictors should be

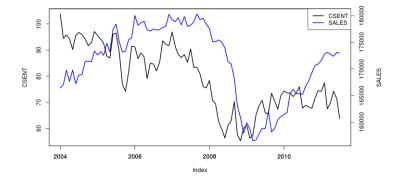


Steve Scott Hal Varian Google

< ≣ >

Consumer sentiment as leading indicator

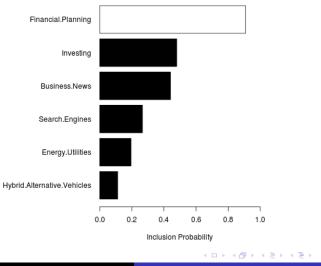
Leading indicator of retail sales in last recession



- ▶ Google Insights for Search categories related to economics (k = 150)
- Deseasonalize predictors using R command stl
- Detrend predictors using simple linear regression
- Let bsts choose predictors

UM Consumer Sentiment Predictors

Probability of inclusion

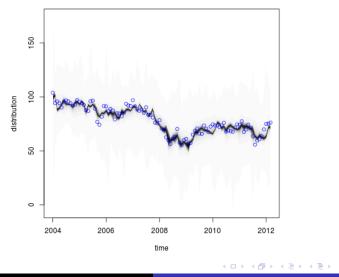


Steve Scott Hal Varian Google

Nowcasting

æ

Posterior distribution of one-step ahead forecast



Recall observation equation:

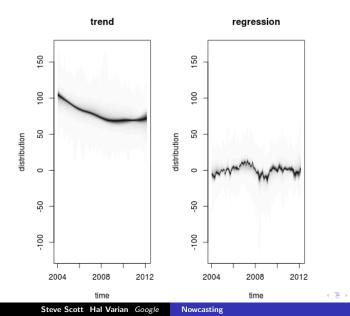
$$y_t = \mu_t + x_t \beta + e_{1t}$$

We can plot the posterior distribution of each of these components. The regression component can be further expanded

$$y_t = \mu_t + x_{1t}\beta_1 + \dots + x_{pt}\beta_p + e_{1t}$$

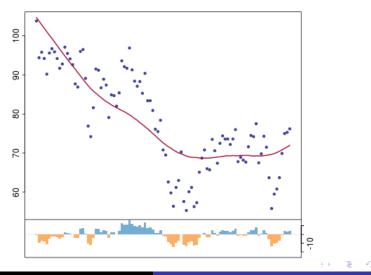
Natural to order predictors by probability of inclusion and look at cumulative plot.

Trend and regression decomposition

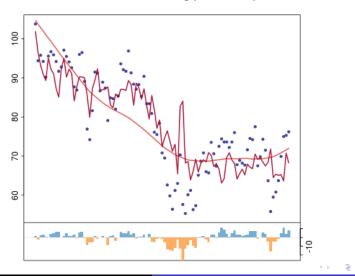


Trend

1. trend (mae=5.6656)

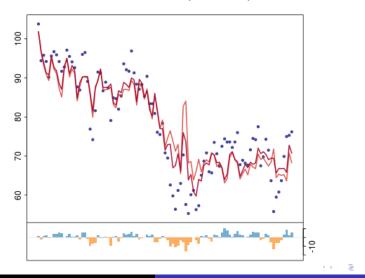


add Financial Planning

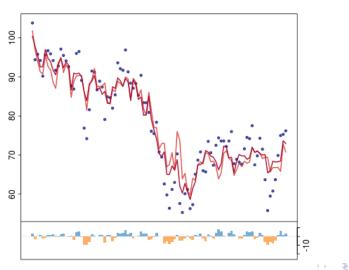


2. add Financial.Planning (mae=4.8529)

add Business News

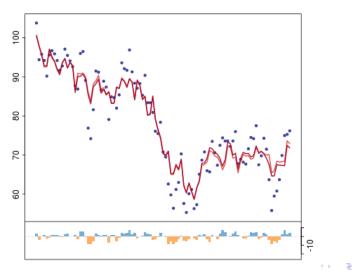


3. add Business.News (mae=3.9888)



4. add Investing (mae=3.3511)

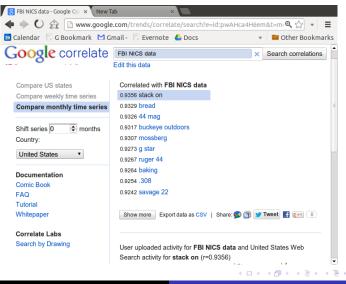
add Search Engines



5. add Search.Engines (mae=3.2748)

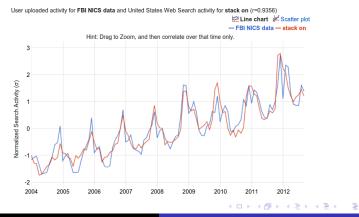
Example 2: gun sales

Use FBI's National Instant Criminal Background Check



Google Correlate Results

- [stack on] has highest correlation
- [gun shops] is chosen by bsts
- Regression model gives 11% improvement in one-step ahead MAE

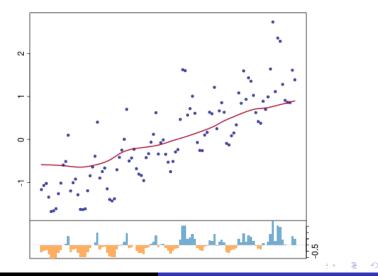


Steve Scott Hal Varian Google

Nowcasting

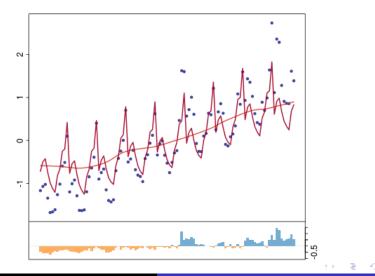
Trend

1. trend (mae=0.49947)

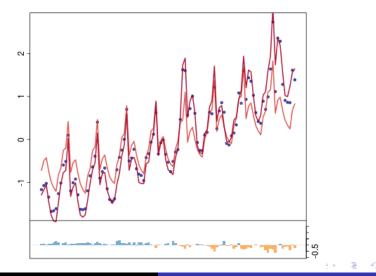


Seasonal

2. add seasonal (mae=0.33654)



Gun Shops



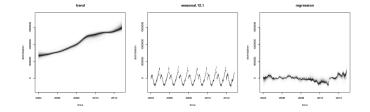
- 586 Google Trends verticals, deseasonalized and detrended
- 107 monthly observations

Category	mean	inc.prob
Recreation::Outdoors::Hunting:and:Shooting	1,056,208	0.97
Travel::Adventure:Travel	-84,467	0.09

Table: Google Trends predictors for NICS checks.

æ

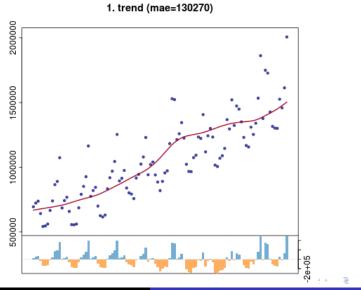
State decomposition



@ ▶

ヨト ヨ

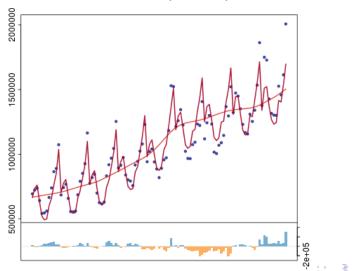
Trend



Steve Scott Hal Varian Google No

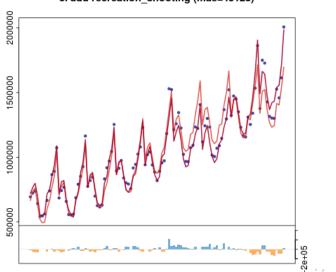
Nowcasting

Seasonal



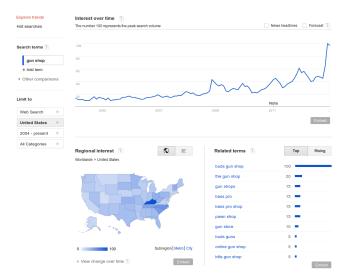
2. add seasonal (mae=61094)

Hunting and Shooting



3. add recreation_shooting (mae=43128)

Searches for [gun shop]



Steve Scott Hal Varian Google

Nowcasting

▲□→ ▲圖→ ▲厘→ ▲厘→

3

Can use prior to improve estimate of trend component

- Google data starts in 2004, only one recession
- Can estimate parameters of trend model with no regressors
- Use this as prior for estimate of trend in estimation period
- Can use prior to influence variable choice in regression
 - Influence the expected number of variables in regression (parsimony)
 - Give higher weight to certain verticals (e.g., economics related)
 - Exclude obvious spurious correlation (e.g., pop song titles)



Run correlate

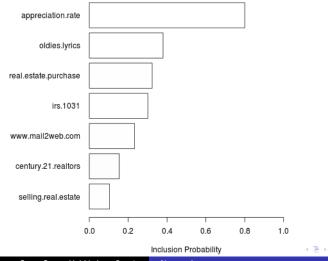


Steve Scott Hal Varian Google

Nowcasting

BSTS variable selection

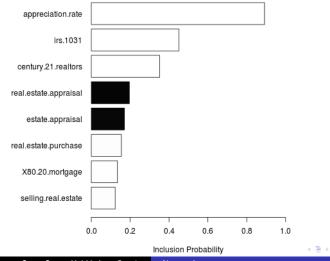
With all correlates



Steve Scott Hal Varian Google

Nowcasting

Э

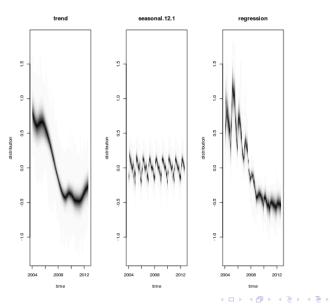


Steve Scott Hal Varian Google

Nowcasting

э

State decomposition

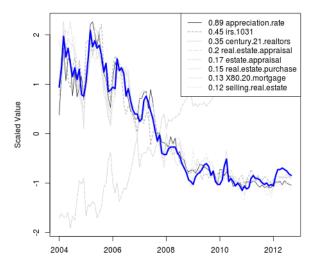


Steve Scott Hal Varian Google

Nowcasting

æ

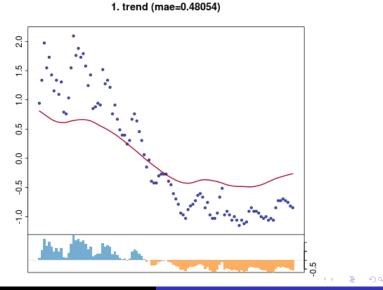
Predictors



Steve Scott Hal Varian Google Nowcasting

< ∃ ▶ 目 のへ()

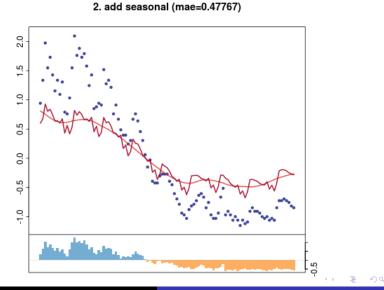
Trend



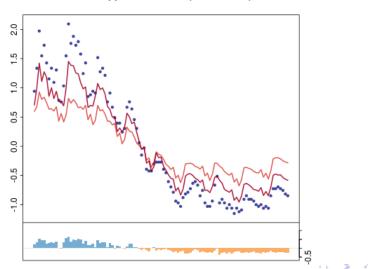
Steve Scott Hal Varian Google

Nowcasting

Seasonal

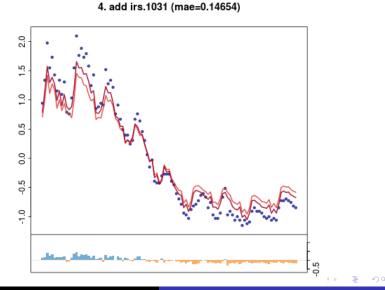


Appreciation rate

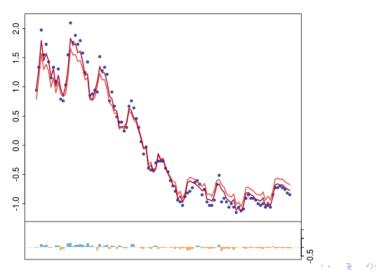


3. add appreciation.rate (mae=0.2241)

IRS 1031

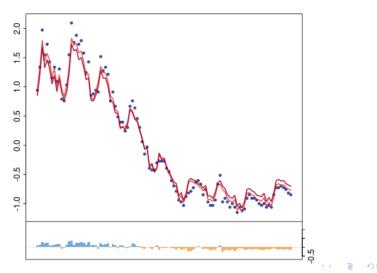


Century 21 realtors

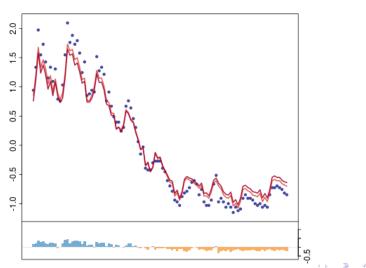


5. add century.21.realtors (mae=0.077138)

Real estate appraisal

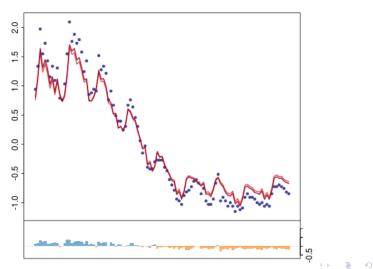


6. add real.estate.appraisal (mae=0.12315)

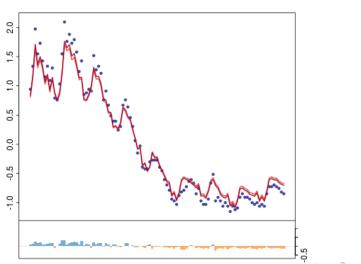


7. add estate.appraisal (mae=0.16587)

Real estate purchase



8. add real.estate.purchase (mae=0.13757)



9. add X80.20.mortgage (mae=0.11207)

- Mixed frequency forecasting done
- Fat tail distributions underway
- Parallel MCMC underway
- Panel data
- Automate the whole thing goal