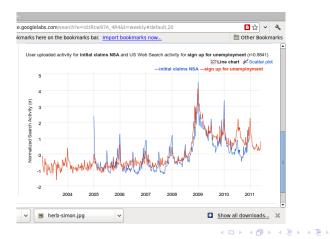
Bayesian Variable Selection for Nowcasting Economic Time Series

Steve Scott Hal Varian

December 31, 2012

Steve Scott Hal Varian Bayesian Variable Selection for Nowcasting Economic Time Sel


向下 イヨト イヨト

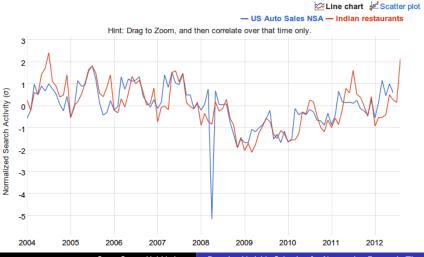
- Want to use Google Trends data to nowcast economic series
 - unemployment may be predicted by "job search" queries
 - auto purchases may be predicted by "vehicle shopping" queries
- Fat regression problem: there are many more predictors than observations
- Millions of queries, hundreds of categories
 - number of observations \sim 100 for monthly economic data
 - \blacktriangleright number of predictors ~ 150 for "economic" categories in I4S
- How do we choose which variables to include?

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: unemployment

- Sometimes Google Correlate works
- Load in: initial claims for unemployment benefits
- Get back 100 queries, including "sign up for unemployment"

- Use deseasonalized initial claims (y_t)
- Use deasonalized, detrended searches for "unemployment office" (x_t)


base:
$$y_t = a_0 + a_1 y_{t-1} + e_t$$

regr: $y_t = a_0 + a_1 y_{t-1} + b x_t + e_t$

- Estimate using rolling window
- One-step-ahead MAE during recession is about 8.7% lower when "unemployment office" query is included

(ロ) (同) (E) (E) (E)

But sometimes simple correlation doesn't work

User uploaded activity for US Auto Sales NSA and United States Web Search activity for Indian restaurants (r=0.7195)

Steve Scott Hal Varian

Bayesian Variable Selection for Nowcasting Economic Time Sel

- How to control for trend and seasonality?
 - Build a model for the *predictable* part of time series ("whiten the series")
 - Find regressors that predict the residuals
- How to choose regressors?
 - Simple correlation is too limited
 - Human judgment doesn't scale

・ 同 ト ・ ヨ ト ・ ヨ ト

- Human judgment
- Significance testing (forward and backward stepwise regression)
- Information criteria (AIC, BIC)
- Principle component, partial least squares and factor models
- Lasso, ridge regression, penalized regression models

・ 同 ト ・ ヨ ト ・ ヨ ト

- Original approach (simple autoregression)
 - forecast y_t using its own past values and human-chosen contemporaneous regressors from Google Trends
 - non-seasonal AR1: $y_t = a_1 y_{t-1} + b x_t + e_t$
 - seasonal AR1: $y_t = a_1 y_{t-1} + a_{12} y_{t-12} + b x_t + e_t$
- Current approach (Bayesian Structural Time Series)
 - Use Kalman filter to whiten time series
 - Spike and slab regression for variable selection
 - Bayesian model averaging for final forecast

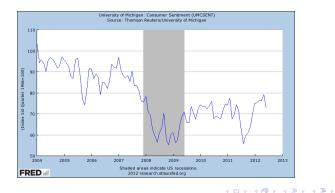
イロト イポト イヨト イヨト

- Classic time series model with constant level, linear time trend, and regressors
 - $y_t = \mu + bt + \beta x_t + e_t$
- "Local linear trend" is a stochastic generalization of this
 - Observation: $y_t = \mu_t + z_t + e_{1t}$
 - State 1: $\mu_t = \mu_{t-1} + b_{t-1} + e_{2t}$
 - ▶ State 2: b_t = b_{t-1} + e_{3t}
 - State 3: $z_t = \beta x_t$
- Parameters to estimate: regression coefficients β and variances of (e_{it}) for i = 1,...,2
- Use these variances to construct optimal Kalman forecast: $\hat{y}_t = y_{t-1} + \beta x_t + k_t$ (variances) × forecast error at t - 1

- Consider simple case without regressors and trend
 - Observation equation: $y_t = \mu_t + e_{1t}$
 - State equation: $\mu_t = \mu_{t-1} + e_{2t}$
- Two extreme cases
 - e_{2t} = 0 is constant mean model where best estimate is sample average up to t
 - $e_{1t} = 0$ is random walk where best estimate is current value
- In general, optimal forecast will be weighted average of past observations and current observation
- Weights depend on variances of the two error terms

- ▶ No problem with unit roots or other kinds of nonstationarity
- No problem with missing observations
- No problem with mixed frequency
- No differencing or identification stage (easy to automate)
- Nice Bayesian interpretation
- Easy to compute estimates (particularly in Bayesian case)
- Nice interpretation of structural components
- Easy to add seasonality
- Good forecast performance

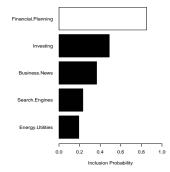
・ 同 ト ・ ヨ ト ・ ヨ ト


Spike

- \blacktriangleright Define vector γ that indicates variable inclusion
- $\gamma_i = 1$ if variable *i* has non-zero coefficient in regression, 0 otherwise
- Binomial prior distribution, $p(\gamma)$, for γ
- Can use an informative prior; e.g., expected number of predictors
- Slab
 - Conditional on being in regression (γ_i = 1) put a (diffuse) prior on β_i, p(β|γ).
- Estimate posterior distribution of (γ, β) using MCMC

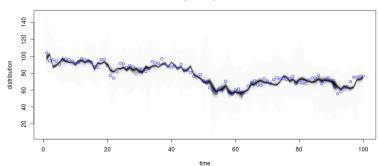
- We simulate draws from posterior using MCMC
- Each draw has a set of variables in the regression (γ) and a set of regression coefficients (β)
- Make a forecast of y_t using these coefficients
- This gives the posterior forecast distribution
- Can take average over all the forecasts for final prediction
- Can take average over draws of γ to see which predictors have high probability of being in regression

Example 1: Consumer Sentiment

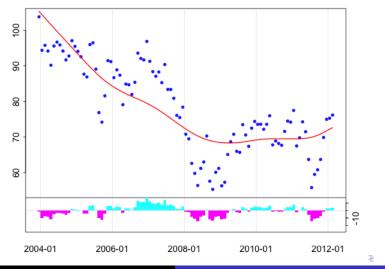

- Monthly UM Consumer sentiment from Jan 2004 to Apr 2012 (n = 100)
- ▶ Google Insights for Search categories related to economics (k = 150)
- No compelling intuition about what predictors should be

- ▶ Google Insights for Search categories related to economics (k = 150)
- Deseasonalize predictors using R command stl
- Detrend predictors using simple linear regression
- Let bsts choose predictors

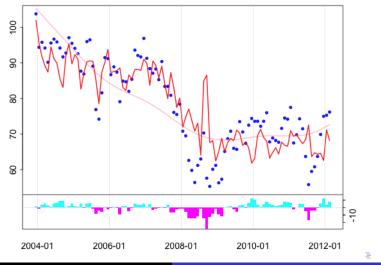
・ 同 ト ・ ヨ ト ・ ヨ ト


UM Consumer Sentiment Predictors

- Financial planning: schwab, 401k, ira, smith barney, fidelity, roth ira
- Investing: stock, gold, fidelity, stocks, silver, stock market, gold price, scottrade

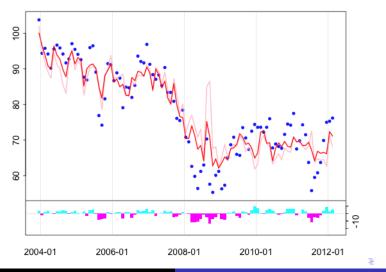

伺下 イヨト イヨト

Posterior distribution of one-step ahead forecast


One step ahead predictions

Start with Kalman trend

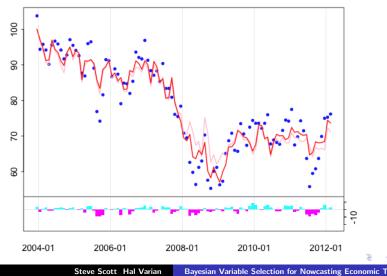
1. trend (mae=5.7134)


add Financial Planning

2. add Financial.Planning (mae=4.9965)

Steve Scott Hal Varian Bayesian Variable Selection

Bayesian Variable Selection for Nowcasting Economic Time Ser



3. add Investing (mae=3.8372)

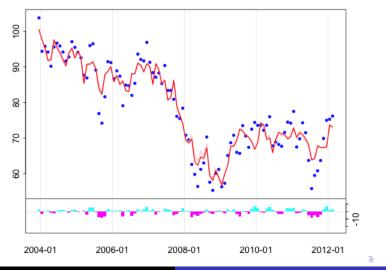
Steve Scott Hal Varian Bayesian Variable Selection

Bayesian Variable Selection for Nowcasting Economic Time Ser

add Business News

4. add Business.News (mae=3.2226)

Bayesian Variable Selection for Nowcasting Economic Time Selection


add Search Engines

5. add Search.Engines (mae=3.1455)

Bayesian Variable Selection for Nowcasting Economic Time Selection

add Energy and Utilities

6. add Energy.Utilities (mae=3.0068)

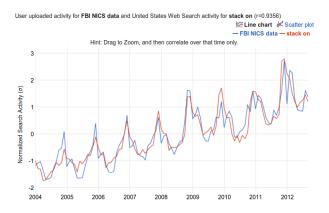
- Can use prior to influence variable choice in regression
 - Give higher weight to certain verticals
 - Influence the expected number of variables in regression
- Can use prior to improve estimate of trend component
 - Google data starts in 2004, only one recession
 - Can estimate parameters of trend model with no regressors
 - Use this as prior for estimate of trend in estimation period

・ 同 ト ・ ヨ ト ・ ヨ ト

- UM Consumer Sentiment starting Jan 1996
- Google data starting Jan 2004
- Estimate variances for Kalman filter using data up to Jan 2004
- Use these parameters as informative prior for subsequent data
- Tends to give more weight to regressors

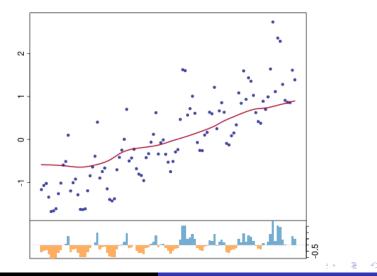
(4月) (4日) (4日)

Example 2: gun sales

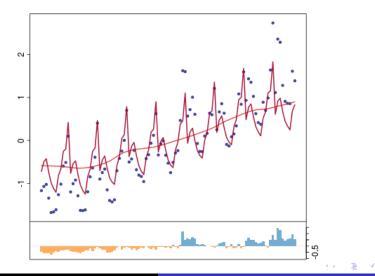

Use FBI's National Instant Criminal Background Check

э

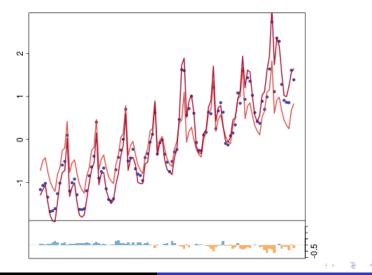
Google Correlate Results


- [stack on] has highest correlation
- [gun shops] is chosen by bsts

イロト イポト イヨト イヨト

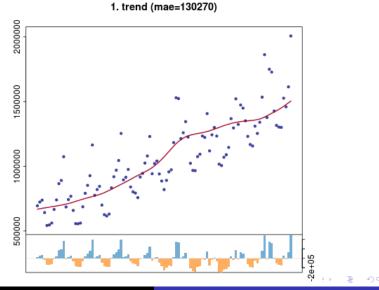

Trend

1. trend (mae=0.49947)

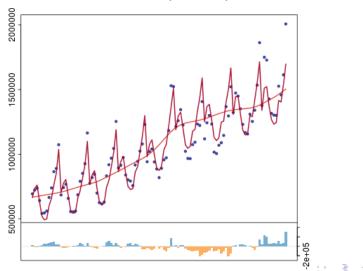

Seasonal

2. add seasonal (mae=0.33654)

Gun Shops

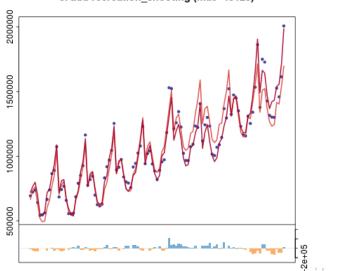

- ► 586 Google Trends verticals, deseasonalized and detrended
- 107 monthly observations

Category	mean	inc.prob
Recreation::Outdoors::Hunting:and:Shooting	1,056,208	0.97
Travel::Adventure:Travel	-84,467	0.09

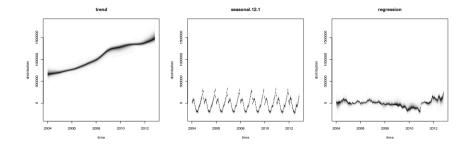

Table : Google Trends predictors for NICS checks.

- 4 同 6 4 日 6 4 日 6

Trend



Seasonal


2. add seasonal (mae=61094)

Hunting and Shooting

3. add recreation_shooting (mae=43128)

State decomposition

< 🗗 >

Э

- Seasonality done
- Mixed frequency forecasting done
- Panel data
- Fat tail distributions almost done
- Parallel MCMC underway
- Automate the whole thing underway

3